Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 12(3): e15930, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38325913

ABSTRACT

OBJECTIVES: To examine the feasibility of individuals with spinal cord injury or disease (SCI/D) to perform combined oropharyngeal and respiratory muscle training (RMT) and determine its impact on their respiratory function. METHODS: A prospective study at a single Veterans Affairs (VA) Medical Center. Inclusion criteria included: 1) Veterans with chronic SCI/D (>6 months postinjury and American Spinal Injury Association (ASIA) classification A-D) and 2) evidence of OSA by apnea-hypopnea index (AHI ≥5 events/h). Eligible participants were randomly assigned to either an experimental (exercise) group that involved performing daily inspiratory, expiratory (using POWERbreathe and Expiratory Muscle Strength Trainer 150 devices, respectively), and tongue strengthening exercises or a control (sham) group that involved using a sham device, for a 3-month period. Spirometry, maximal expiratory pressure (MEP), maximal inspiratory pressure (MIP), polysomnography, and sleep questionnaires were assessed at baseline and at 3 months. RESULTS: Twenty-four individuals were randomized (12 participants in each arm). A total of eight (67%) participants completed the exercise arm, and ten (83%) participants completed the sham arm. MIP was significantly increased (p < 0.05) in the exercise group compared with the baseline. CONCLUSIONS: Combined oropharyngeal and RMT are feasible for individuals with SCI/D. Future studies are needed to determine the clinical efficacy of these respiratory muscle exercises.


Subject(s)
Sleep Apnea, Obstructive , Spinal Cord Injuries , Humans , Pilot Projects , Prospective Studies , Feasibility Studies , Spinal Cord Injuries/therapy , Breathing Exercises , Respiratory Muscles , Muscle Strength/physiology
2.
Nutrients ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364794

ABSTRACT

High-intensity/impact exercise elicits a transient increase in inflammatory biomarkers. Consuming nutrient-dense wholefoods, like milk, following exercise may modulate post-exercise inflammation and aid recovery. We examined the effect of post-exercise skim milk consumption (versus an isoenergetic, isovolumetric carbohydrate [CHO] drink) on acute exercise-induced inflammation in untrained females. Using a randomized crossover design, 13 healthy females (age = 20 ± 2.3 y; BMI = 21.0 ± 1.1 kg/m2) completed two bouts of combined resistance/plyometric exercise followed by either skim milk (MILK) or CHO at 5-min and 1 h post-exercise. Serum interleukin [IL]-1ß, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) concentrations were measured at pre-exercise, 15-min, 75-min, 24 h, and 48 h post-exercise. IL-6 increased 15-min post-exercise vs. all other timepoints (time effect, p = 0.017). Between 24 and 48 h, IL-10 decreased and increased in the MILK and CHO conditions, respectively (interaction, p = 0.018). There were no significant effects for IL-1ß or TNF-α. Relative concentrations of IL-1ß (p = 0.049) and IL-10 (p = 0.028) at 48 h post-exercise were lower in MILK vs. CHO. Milk post-exercise did not influence the absolute concentration of pro-inflammatory cytokines; however, there were divergent responses for the anti-inflammatory cytokine, IL-10, and milk reduced the relative inflammatory response at 48 h (vs. CHO) for IL-1ß and IL-10. This demonstrates the potential for milk to modulate inflammation post-exercise in this sample.


Subject(s)
Interleukin-10 , Plyometric Exercise , Adolescent , Adult , Female , Humans , Young Adult , Cytokines , Inflammation , Interleukin-6 , Tumor Necrosis Factor-alpha , Cross-Over Studies
3.
Front Nutr ; 9: 840973, 2022.
Article in English | MEDLINE | ID: mdl-35571916

ABSTRACT

Dairy products and impact exercise have previously been identified to be independently beneficial for bone mineral properties, however, it is unknown how the combination of these two osteogenic interventions may alter acute bone turnover. Using a randomized crossover design, we compared the acute effects of consuming milk vs. an isoenergetic carbohydrate control beverage on bone biomarkers following loading exercise. Thirteen healthy female participants (Age = 20.3 ± 2.3y; BMI = 21.0 ± 1.1 kg/m2) consumed either 550 mL of 0% skim white milk (MILK) or 52.7 g of maltodextrin in 550 mL of water (CHO), both 5 min and 1 h following completion of a combined plyometric (198 impacts) and resistance exercise (3-4 sets/exercise, 8-12 reps/set, ∼75% 1-RM) bout. Venous blood samples were obtained pre-exercise, and 15 min, 75 min, 24 h and 48 h post-exercise to assess serum concentrations of bone resorption biomarkers, specifically carboxyl-terminal crosslinking telopeptide of type I collagen (CTX), receptor activator nuclear factor kappa-ß ligand (RANKL), and sclerostin (SOST), as well as bone formation biomarkers, specifically osteoprotegerin (OPG) and osteocalcin (OC). When absolute biomarker concentrations were examined, there were no interaction or group effects for any biomarker, however, there were main time effects (p < 0.05) for RANKL, SOST, and OC, which were lower, and the OPG: OPG/RANKL ratio, which was higher at 75 min post-exercise compared with baseline in both conditions. In addition to assessing absolute biomarker concentrations at specific timepoints, we also evaluated the relative (% change) cumulative post-exercise response (75 min to 48 h) using an area under the curve (AUC) analysis. This analysis showed that the relative post-exercise CTX response was significantly lower in the MILK compared to the CHO condition (p = 0.03), with no differences observed in the other biomarkers. These results show that while milk does not appear to alter absolute concentrations of bone biomarkers compared to CHO, it may attenuate relative post-exercise bone resorption (i.e., blunt the usual catabolic response to exercise).

4.
Int J Sport Nutr Exerc Metab ; 31(1): 32-39, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33186897

ABSTRACT

The authors sought to determine whether consuming collagen peptides (CP) enhances musculoskeletal recovery of connective tissues following a damaging exercise bout. Resistance-trained males consumed 15 g/day of CP (n = 7) or placebo (n = 8), and after 7 days, maximal voluntary isometric contraction (MVIC), countermovement jump height, soreness, and collagen turnover were examined. Five sets of 20 drop jumps were performed and outcome measures were collected 24, 48, and 120 hr postexercise. Countermovement jump height was maintained in the CP group at 24 hr (PRE = 39.9 ± 8.8 cm vs. 24 hr = 37.9 ± 8.9 cm, p = .102), whereas the CP group experienced a significant decline at 24 hr (PRE = 40.4 ± 7.9 cm vs. 24 hr = 35.5 ± 6.4 cm, p = .001; d = 0.32). In both groups, muscle soreness was significantly higher than PRE at 24 hr (p = .001) and 48 hr (p = .018) but not at 120 hr (p > .05). MVIC in both legs showed a significant time effect (left: p = .007; right: p = .010) over the 5-day postexercise period. Neither collagen biomarker changed significantly at any time point. CP supplementation attenuated performance decline 24 hr following muscle damage. Acute consumption of CP may provide a performance benefit the day following a bout of damaging exercise in resistance-trained males.


Subject(s)
Collagen/administration & dosage , Dietary Supplements , Exercise/physiology , Myalgia/prevention & control , Peptide Fragments/administration & dosage , Resistance Training/adverse effects , Adolescent , Adult , Biomarkers/metabolism , Collagen/metabolism , Double-Blind Method , Humans , Isometric Contraction , Leg/physiology , Male , Muscle Strength , Peptide Fragments/metabolism , Pilot Projects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...